
Cloud Download: Using Cloud Utilities to Achieve
High-quality Content Distribution for Unpopular Videos

∗

Yan Huang 1, Zhenhua Li 2∗, Gang Liu 1, and Yafei Dai 2

1 Tencent Research, Shanghai, China
2 EECS, Peking University, Beijing, China

{galehuang, lizhenhua1983 ∗, ganghust, daiyafei} @gmail.com

ABSTRACT

Video content distribution dominates the Internet traffic.
The state-of-the-art techniques generally work well in dis-
tributing popular videos, but do not provide satisfactory
content distribution service for unpopular videos due to low
data health or low data transfer rate. In recent years, the
worldwide deployment of cloud utilities provides us with
a novel perspective to consider the above problem. We
propose and implement the cloud download scheme, which
achieves high-quality video content distribution by using
cloud utilities to guarantee the data health and enhance the

data transfer rate. Specifically, a user sends his video re-
quest to the cloud which subsequently downloads the video
from the Internet and stores it in the cloud cache. Then
the user can usually retrieve his requested video (whether
popular or unpopular) from the cloud with high data rate
in any place at any time, via the intra-cloud data transfer
acceleration. Running logs of our real deployed commercial
system (named VideoCloud) confirm the effectiveness and
efficiency of cloud download. The users’ average data trans-
fer rate of unpopular videos exceeds 1.6 Mbps, and over 80%
of the data transfer rates are more than 300 Kbps which is
the basic playback rate of online videos. Our study provides
practical experiences and valuable heuristics for making use
of cloud utilities to achieve efficient Internet services.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed applications

General Terms

Design, Measurement, Performance

∗Area chair: Surender Chandra.
This paper is a joint work of Tencent Research and Peking
University. The first two organizations/authors have made
their unique and equally important contributions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’11, November 28–December 1, 2011, Scottsdale, Arizona, USA.
Copyright 2011 ACM 978-1-4503-0616-4/11/11 ...$10.00.

1. INTRODUCTION
Video content distribution dominates the Internet traf-

fic. A recent Cisco report [1] says that nearly 90% of all
the consumer IP traffic is expected to consist of video con-
tent distribution, including web video like YouTube [2], P2P
(peer-to-peer) video like BitTorrent [3] and PPLive [4], and
so on in 2012. Therefore, achieving high-quality video con-
tent distribution over the Internet is of great significance
for both academia and industry. Here the meaning of high-
quality is two-fold: high data health and high data transfer

rate. The metric data health is initially used in the Bit-
Torrent protocol [3]. It denotes the number of available full
copies of the shared file in a BitTorrent swarm. For example,
the data health 1.0 means one full copy is available, and a
swarm with data health less than 1.0 is called an unhealthy

swarm because no peer in the swarm can get a full copy.
In this paper, we keep using data health to represent the
data redundancy level of a video file. High data health im-
plies that the user is able to obtain a full copy of the video,
and high data transfer rate enables the advanced function
of online video streaming (including live streaming [5] and
on-demand streaming [6]).

The state-of-the-art techniques of video content distribu-
tion mainly include CDN (content distribution network like
Akamai [7]) and P2P. CDN is the traditional technique that
optimizes the performance of Internet content distribution
by strategically deploying edge servers at multiple locations
(often over multiple ISP networks). These edge servers co-
operate with each other by replicating or moving data ac-
cording to data popularity and server load. An end user
usually obtains a copy of data from a nearby edge server,
so that the data transfer rate is greatly enhanced and the
load on the original data source is reduced. However, for
the sake of limited storage and bandwidth capacity, it is not
cost-effective for CDN to replicate unpopular videos to edge
servers [8], considering that there are many more unpop-
ular videos than popular videos over the Internet. More-
over, CDN is a charged facility that only serves the content
providers who have paid, rather than a public utility of the
Internet. Consequently, it is impractical to count on CDN
for efficient distribution of unpopular videos.

Different from CDN, P2P content distribution mainly re-
lies on the unstable but numerous end users to form peer-
to-peer data swarms [3, 9], where data is directly exchanged
between neighboring peers. The real strength of P2P shows
when a popular video is distributed, because a popular video
is shared by a number of peers and more peers usually im-
ply higher data health and higher degree of download paral-

lelism, which further lead to higher data transfer rate. As to
an unpopular video, it is often difficult to find a correspond-
ing peer swarm. Even if the peer swarm exists, the few peers
are unlikely to have high data health or high data transfer
rate, and thus each peer has to stay online for long hours
to wait for the download completion — a tedious process of
low energy efficiency. In a word, although CDN and P2P
generally work well in distributing popular videos, neither
of them is able to provide satisfactory content distribution
service for unpopular videos, due to low data health or low
data transfer rate.

HTTP server

Internet

eMule

client

BT

client

User
User

Cloud

1
.
req
u
est

User

4
.
retriev

e

2. download

3
.
n
o
tify

FTP server

Figure 1: Principle of cloud download.

In recent years, the worldwide deployment of cloud util-
ities [10, 11] provides us with a novel perspective to con-
sider the above problem. In this paper, we propose and
implement the cloud download scheme, which achieves high-
quality video content distribution by using cloud utilities
to guarantee the data health and enhance the data transfer

rate. The principle of cloud download is depicted in Figure
1. Firstly, a user sends his video request to the cloud (see
Arrow 1 in Figure 1). The video request contains a file link
which can be an HTTP/FTP link, a BitTorrent [3]/eMule
[9] link, and so on 1. Subsequently, the cloud downloads the
requested video from the file link and stores it in the cloud
cache (see Arrow 2 in Figure 1) to guarantee the data health
of the video ≥ 1.0 (each video also has a duplicate in the
cloud cache for redundancy). Then the cloud notifies the
user (see Arrow 3 in Figure 1) and the user can usually re-

trieve 2 his requested video (whether popular or unpopular)
from the cloud with high data rate (see Arrow 4 in Figure
1) in any place at any time, via the intra-cloud data trans-
fer acceleration (which will be addressed in detail in Section
3.2). In practice, the cloud does not need to notify the user
when his requested video is available. Instead, the user ac-
tively checks the download progress by himself and takes
corresponding actions. That is to say, Arrow 3 in Figure 1
can also be replaced by “3. check”.

Besides, an important derivative advantage brought by
cloud download is the user-side energy efficiency. An In-
ternet user often has to keep his computer (and network
interface card) powered-on for long hours (says t1) only to
download an unpopular video [12]. During this process, a
lot of energy is wasted because the major components (in-
cluding CPU, memory, disk, etc.) keep working but are not

1The cloud does not accept keywords as the video request,
because one keyword or a combination of several keywords
may correspond to multiple videos with different contents in
the Internet.
2Here we use retrieve to distinguish with download. In this
paper, download means the cloud obtains data from the In-
ternet while retrieve means the user obtains data from the
cloud.

efficiently used. Cloud download uses the cloud servers to
download the requested videos, so its users do not need to be
online; in fact, they do not need to open their computers at
all — this is the reason why we also call “cloud download”
as “offline download”. When the requested video is avail-
able in the cloud, the user can usually retrieve it in short
time (says t2). Thus, cloud download significantly reduces
the user-side energy cost (by the ratio t1−t2

t1
). The detailed

energy efficiency analysis will be presented in Section 4.5.
The only drawback of cloud download lies in that for some

videos, the user must wait for the cloud to download it and
thus he cannot view the video at once. The abovementioned
waiting time is denoted as the view startup delay. Note
that CDN and P2P also have their view startup delay to
buffer a certain amount of data for a smooth view startup
of the video (e.g., buffer the first several minutes’ data for
a 100-minute video). This drawback is effectively alleviated
by the implicit and secure data reuse among the users of
cloud download. For each video, the cloud only downloads
it from the Internet when it is requested for the first time,
and the subsequent requests are directly satisfied by using
the cached copy with very low view startup delay (except
when the cached copy is replaced). Such data reuse is more
secure than the explicit data reuse among P2P users (which
is susceptible to the Sybil attack [13], Eclipse attack [14],
DHT attack [15], and so on), because it is completely han-
dled by the cloud and is oblivious to users. According to
the real-system performance, the data reuse rate among the
users reaches 87%, indicating that most video requests are
satisfied instantly with very low view startup delay.

Since June 2010, we have deployed a large-scale commer-
cial cloud download system (named VideoCloud [16]) on top
of the QQCyclone platform [17], using a “micro” data center
composed of 426 commodity servers. VideoCloud has at-
tracted over 6 million registered users and supports most of
the mainstream content distribution protocols like HTTP,
FTP, BitTorrent, eMule, and so on. Currently, VideoCloud
receives over 0.2 million video requests sent from around
50000 users per day, and most of the requests are issued for
unpopular videos. The data center of VideoCloud has been
deployed across four major ISPs in China and is planned
to cover more domains. The user’s monetary cost for cloud
download service differs from Amazon S3 [18] and Microsoft
Azure [19], but is more similar to Dropbox [20]. Specifically,
the user of VideoCloud is charged according to his cloud
storage capacity and regardless of the bandwidth consumed.
Any registered user is allocated with 5-GB free storage, and
extra storage is charged in unit of 5 GB.

The system running logs confirm the effectiveness and ef-
ficiency of cloud download. For example, the users’ average
data transfer rate of unpopular videos exceeds 1.6 Mbps,
and over 80% of the data transfer rates are more than 300
Kbps which is the basic playback rate of online videos [2,
21]. In comparison, when the common download method is
used, the average data transfer rate is merely 0.57 Mbps,
and 70% of the data transfer rates are less than 300 Kbps.
The common download method denotes the common way
in which a user downloads video content from the Internet,
e.g., using a web browser or a P2P client software to down-
load a video. Besides, compared with the common download
method, cloud download reduces the user-side energy cost
by around 92%.

To sum up, our contributions in this paper are as follows:

1. We analyze the state-of-the-art techniques of video
content distribution (i.e., CDN and P2P) and discover
that neither of them is able to provide satisfactory con-
tent distribution service for unpopular videos. Driven
by this problem, we propose and implement the novel
cloud download scheme, which achieves high-quality
video content distribution by using cloud utilities to
guarantee the data health and enhance the data trans-
fer rate. The only drawback of cloud download, i.e.,
the view startup delay, is effectively alleviated by the
implicit and secure data reuse among the users.

2. We have deployed VideoCloud, a large-scale commer-
cial cloud download system. And we present its system
architecture and design techniques, as well as our ob-
servations, analysis, and insights. Our study provides
practical experiences and valuable heuristics for mak-
ing use of cloud utilities to achieve efficient Internet
services.

3. We evaluate the performance of VideoCloud via its
running logs using three major metrics: data transfer
rate, view startup delay, and energy efficiency. The
evaluation results confirm the effectiveness and effi-
ciency of cloud download.

2. RELATED WORK
As the backbone bandwidth and end user access band-

width of the Internet continuously increase, people have
been putting forward higher and higher demand on video
content distribution. The pixel resolution evolves from CIF
(common intermediate format, 352*288), VGA (video graph-
ics array, 640*480), to HD (high-definition, 1280*720), and
the playback mode evolves from view-after-download to view-
as-download. In the past 15 years, high-quality video con-
tent distribution has been a very hot research topic in both
industry and academia [22], in particular the state-of-the-art
techniques: CDN and P2P. The advantages and disadvan-
tages of CDN, P2P, and cloud download have been addressed
in the previous section. In recent years, some researchers
recognize that both CDN and P2P have their limitations
and thus propose novel schemes by combining or optimizing
CDN and P2P.

On top of ChinaCache [23], the biggest commercial CDN
service provider in China, Yin et al. developed a hybrid

CDN-P2P live streaming system (named LiveSky [24]) to in-
corporate the strengths on both sides: the scalability of P2P,
and the quality control capability and reliability of CDN. Al-
though the hybrid CDN-P2P architecture inevitably brings
extra deployment complication and maintenance cost, LiveSky
achieves lower burden on the CDN network and higher work-
ing efficiency of peer streaming for popular videos. However,
for unpopular files, it is difficult and inefficient for the few
users to form a peer swarm, and then the performance of
LiveSky will be like that of a common CDN.

Wu et al. [25] refocused on the importance of servers
in P2P streaming systems and thus proposed the server-

assisted P2P streaming scheme. Via a 7-month running
trace of a commercial P2P live streaming system, named
UUSee [26], they found that the total available bandwidth
of the 150 streaming servers could not meet the increasing
demand of download bandwidth from hundreds of channels
(a channel can be seen as a peer swarm), although the to-
tal upload bandwidth of peers also increased with download

demand. So they proposed an allocation algorithm of server
bandwidth, named Ration, which could proactively predict
the minimum server bandwidth demand of each channel,
based on historical information. Therefore, each channel can
be guaranteed with desirable streaming quality. Ration has
the similar shortcoming as LiveSky because every channel of
UUSee can be seen as a very popular video. For unpopular
videos, Ration would work like the traditional client-server
video streaming scheme.

Recent years have seen a strong trend in extremely high-

quality video content distribution like online HDTV (high-
definition TV) [27] and cinematic-quality VoD (video-on-
demand) [28]. Undoubtedly, extremely high-quality videos
can provide Internet users with wonderful viewing experi-
ences; however, the content distribution of extremely high-
quality videos (in particular those unpopular videos without
powerful CDN support) over the highly dynamic Internet en-
vironments has still been a very challenging problem. The
latest practical solution may be Novasky [28], an operational
“P2P storage cloud” for on-demand streaming of cinematic-
quality videos over a high-bandwidth network (i.e., the cam-
pus network of Tsinghua University). The limitation of No-
vasky is obvious: it works on a high-bandwidth campus net-
work which is much more stable and homogeneous than the
real Internet. Cloud download uses cloud utilities to guar-
antee the data health of videos and meanwhile enhance the
data transfer rate to quite high and stable. Thus, cloud
download can be taken as a promising solution to the future
extremely high-quality video content distribution over the
Internet.

3. SYSTEM DESIGN
In this section, we present the system architecture and

design techniques of VideoCloud, as well as our observations,
analysis, and insights.

3.1 System Overview
As depicted in Figure 2, the architecture of VideoCloud

is mainly composed of five building blocks: 1) ISP Proxies,
2) Task Manager, 3) Task Dispatcher, 4) Downloaders, and
5) Cloud Cache. The detailed hardware composition of each
building block is listed in Table 1. Note that all the infor-
mation of Memory, Storage, and Bandwidth refers to one
server. We do not list the CPU information since the per-
formance of CPU is not important for our system which is
data (bandwidth and storage) intensive rather than compu-
tation intensive. In total, the system utilizes 426 commod-
ity servers, including 300 chunk servers making up a 600-TB
cloud cache, 80 download servers with 26 Gbps of Internet
bandwidth, and 33 upload servers with 20 Gbps of Internet
bandwidth. Every server runs the Suse Linux v10.1 operat-
ing system. Now we describe the organization and working
process of the system by following the message and data
flows of a typical cloud download task.

The user of VideoCloud should have installed its client
software [16]. The client software is able to recognize which
ISP the user locates at from the user’s IP address (with
the help of an embedded and periodically updated IP-ISP
mapping file), so the video request is firstly sent to the cor-
responding ISP Proxy by the client software (see Arrow 1 in
Figure 2). Each ISP Proxy maintains a request queue to con-
trol the number of requests sent to the Task Manager (see
Arrow 2 in Figure 2), so that the Task Manager is resilient

Internet

ISP1 Proxy

Client

ISP1

1

ISP2 Proxy

Client

ISP2

ISP Proxy

Client

ISP

Task Manager Task Dispatcher

2
3

Cloud Cache
(300 chunk servers,

33 upload servers)

4
5

6

Downloaders

(80 servers)

7

8

Cloud Download

Intranet data flow

Internet data flow

Figure 2: System architecture of cloud download.

Table 1: Hardware composition of VideoCloud.

Building Block Number of servers Memory Storage Bandwidth

ISP Proxy 4 8 GB 250 GB 1 Gbps (Intranet), 0.3
Gbps (Internet)

Task Manager 4 8 GB 250 GB 1 Gbps (Intranet)
Task Dispatcher 3 8 GB 460 GB 1 Gbps (Intranet)
Downloaders 80 8 GB 460 GB 1 Gbps (Intranet),

∼0.325 Gbps (Internet)
Cloud Cache 300 chunk servers, 33 upload

servers, and 2 index servers
8 GB 4 TB (chunk server),

250 GB (upload server)
1 Gbps (Intranet), ∼0.6
Gbps (Internet)

to request upsurge in any ISP. Presently, VideoCloud has
set four ISP Proxies in the four major ISPs in China: China
Telecom [29], China Unicom [30], China Mobile [31], and
CERNET (China Education and Research Network) [32]. If
the user does not locate at any of the four major ISPs (such
users take a small portion), his video request is sent to a
random one of the four ISP Proxies. We plan to set more
ISP Proxies in more ISPs in the future.

On receiving a video request, the Task Manager firstly
checks whether the requested video has a copy in the Cloud
Cache (see Arrow 3 in Figure 2). If the video request is a
BitTorrent/eMule link, the Task Manager examines whether
the Cloud Cache contains a video which has the same hash
code with that contained in the BitTorrent/eMule link 3.
Otherwise, the Task Manager directly examines whether the
file link is repeated in the Cloud Cache. If the requested
video actually has a copy, the user can directly and instantly
retrieve the video from the Cloud Cache (see Arrow 8 in
Figure 2). Otherwise, the Task Manager forwards the video
request to the Task Dispatcher (see Arrow 4 in Figure 2).

The Task Dispatcher assigns the video request to one
server (called a “downloader”) in the Downloaders for data
downloading (see Arrow 5 in Figure 2). For example, if
the video request is a P2P request, the assigned downloader
will act like a common peer to join the corresponding peer
swarm. The Task Dispatcher is mainly responsible for bal-
ancing the bandwidth loads of the 80 downloaders. The
number of downloaders (80) is empirically determined to
guarantee that the total download bandwidth (26 Gbps) ex-

3A BitTorrent/eMule link contains the hash code of its af-
filiated file in itself, while an HTTP/FTP link does not.

ceeds the peak load of download tasks (nearly 20 Gbps till
now). Each downloader executes multiple download tasks
in parallel in order to fully utilize its download bandwidth
(around 0.325 Gbps) (see Arrow 6 in Figure 2), and the Task
Dispatcher always assigns a newly incoming video request to
the downloader which has the lowest download data rate.

As long as the downloader accomplishes a download task,
it computes the hash code of the downloaded video and at-
tempts to store the video in the Cloud Cache (see Arrow 7 in
Figure 2). The downloader firstly checks whether the video
has a copy in the Cloud Cache (using the hash code). If the
video is repeated, the downloader simply discards it. Oth-
erwise, the downloader checks whether the Cloud Cache has
enough unused space to store the new video. If the Cloud
Cache does not have enough unused space, it deletes some
cached videos to get enough unused space to store the new
video. The concrete cache architecture, cache capacity plan-
ning, and cache replacement strategy will be investigated in
Section 3.2, Section 3.4, and Section 3.5, respectively.

When the abovementioned video store process is finished,
the user can usually retrieve the requested video from the
Cloud Cache (see Arrow 8 in Figure 2) in any place at
any time. Since the user’s ISP information can be acquired
from his video retrieve message (see Arrow 4 in Figure 1),
the Cloud Cache takes advantage of the intra-cloud ISP-
aware data upload technique to restrict the retrieve data
flow within the same ISP as the user’s, so as to enhance the
data transfer rate and avoid the inter-ISP traffic cost.

3.2 Data Transfer Acceleration
A critical problem of cloud download is how to accelerate

the data transfer (i.e., retrieve) process so that the user can

obtain his requested video (whether popular or unpopular)
from the cloud with high data rate in any place at any time.
Considering that the cross-ISP data transfer performance
degrades seriously and the inter-ISP traffic cost is often ex-
pensive [33, 34], we solve this problem via the intra-cloud
ISP-aware data upload technique. Since the user’s real-time
ISP information can be acquired from his video retrieve mes-
sage, the Cloud Cache takes advantage of its ISP-aware up-
load servers to restrict the retrieve data flow within the same
ISP as the user’s, so as to enhance the retrieve data rate and
avoid inter-ISP traffic cost. Specifically, as shown in Figure
3, the Cloud Cache consists of 300 chunk servers, 33 up-
load servers, and 2 index servers which are connected by a
DCN (data center network). A specific number of upload
servers are placed in each ISP, proportional to the data traf-
fic volume in each ISP. The video requests come from tens
of ISPs, but most of them come from the four major ISPs
in China: China Telecom [29], China Unicom [30], China
Mobile [31], and CERNET [32]. Figure 4 demonstrates the
number of users, the number of video requests, and the data
traffic volume in each ISP in one day. Thereby, the Cloud
Cache places 21, 10, 1, and 1 upload servers in the four ma-
jor ISPs respectively at the moment. If the user locates at
other ISPs, we randomly choose an upload server to transfer
the corresponding data.

Data Center

Network

Chunk

Servers

Upload

Servers

Client

ISP1

ISP1 Servers

Cloud Cache

Client

ISP2

ISP2 Servers

Client

ISP

ISP Server

Index

Server

DCN data flow

Internet data flow

Figure 3: Architecture of the Cloud Cache.

Every video is segmented into chunks of equal size to be
stored in the chunk servers, and every chunk has a duplicate
for redundancy, so the 300 chunk servers can accommodate
a total of 300 × 4 TB

2
= 600 TB unique data. In order to

achieve load balance and exploit the chunk-correlation in
the same file, all the chunks of a video are stored together
into the chunk server with the biggest available storage ca-
pacity. The duplicate chunks of a video must be stored in
another chunk server. There exists an index server (as well
as a backup index server) which maintains the metadata of
chunks for chunk search and validation. The metadata is
a list of n-tuples like < file hash code, file link, number of

chunks, physical location of the first chunk, physical location
of the first duplicate chunk >.

The DCN in the Cloud Cache adopts the traditional three-
tier tree structure to organize the switches, composed of a
core tier in the root of the tree, an aggregation tier in the

Telecom Unicom Mobile CERNET Other ISPs
0

2

4

6

8

10

12
x 10

4

Number of users
Number of video requests
Total size of the requested videos (GB)

Figure 4: Number of users, number of video re-

quests, and data traffic volume in each ISP in one

day.

middle, and an edge tier at the leaves of the tree. The index
servers, chunk servers, upload servers, and downloaders are
connected to the switches at the edge tier. Suppose a user A
locating at ISP1 wants to retrieve a video f stored in a chunk
server S, and the Cloud Cache has placed 10 upload servers
(U1, U2, · · · , U10) in ISP1. The chunks of f are firstly trans-
ferred from S to a random upload server (says U4) in ISP1,
and then transferred from U4 to the user A. The transfer
process is not store-and-forward but pass-through: as soon
as U4 gets a complete chunk of f , U4 transfers the chunk
to A. f would not be cached in U4 because the intra-cloud
end-to-end bandwidth is quite high (1 Gbps) and we do not
need to make things more complicated than necessary.

3.3 Download Success Rate Improvement
Although cloud download guarantees the data health of

the requested video (≥1.0) after the video is downloaded by
the cloud, it cannot guarantee to download every requested
video successfully. In this subsection, we construct a simple
model to analyze the download success rates of cloud down-
load and common download (the data reuse among users
is not considered). Common download is the common way
in which a user downloads video content from the Internet.
Considering the highly dynamic and complicated Internet
environments, the target of our model is to illustrate the
long-term expected trend, rather than the accurate predic-
tion in a short period.

Whether we use common download or cloud download, the
download success rate of a requested HTTP/FTP file only
depends on the accessibility of the file link (1-accessible or 0-
inaccessible). According to our measurements of the accessi-
bility of numerous HTTP/FTP file links submitted to Video-
Cloud, the average download success rate of HTTP/FTP
files is:

R1 = R′

1 = 0.414.

The download success rate of a requested P2P file is much
more complicated because the accessibility of a peer is a
stochastic variable. Consider a P2P swarm consisting of n
peers sharing a file f . The time limit is T hours, that is
to say, each peer must draw his conclusion in T hours: 1-
download success or 0-download failure. In average, each
peer stays online for t hours in the time limit (T hours) and
the data health of a single peer is h (h<1.0). For a common
peer P , during the t hours when P is online, P is expected

to encounter n·t

T
online peers (n is the average number of

peers in a peer swarm), assuming the online time of each
peer is independent. Since the data health of a single peer
is h, the download success rate of P is expected to be:

R2 = 1− (1− h)
n·t

T .

Cloud download uses a stable peer P ′ (in fact, P ′ is a cloud
server) to join in the P2P swarm, so the online duration t
for P ′ is t = T . Then the download success rate of P ′ is
expected to be:

R′

2 = 1− (1− h)n.

Among all the video requests, let α denote the fraction of
HTTP/FTP file requests, and β denote the fraction of P2P
file requests. Thus, the overall download success rates of
common download and cloud download are expected to be:

R = α ·R1 + β · R2, and R′ = α ·R′

1 + β ·R′

2.

Our 17-day measurements of VideoCloud show that h =
0.4, n = 5.4, t

T
= 0.12, α = 27.4%, and β = 72.6%. As a

result,

R = 31.8%, and R′ = 79.3%.

The expected download success rates (R and R′) are de-
picted in Figure 5 to compare with the real performance of
VideoCloud. The real-system average download success rate
is 81.4%.

5 10 15
0

0.2

0.4

0.6

0.8

1

day

d
o

w
n

lo
a

d
 s

u
c
c
e

s
s
 r

a
te

cloud download

cloud download (expected)

common download (expected)

Figure 5: Download success rate in each day.

3.4 Cache Capacity Planning
The biggest hardware and energy cost of the VideoCloud

system comes from the Cloud Cache, in particular the 300
chunk servers making up a 600-TB cloud cache. In this
subsection, we address the reason why the cache capacity is
planned as 600 TB.

VideoCloud has over 6 million registered users. It is im-
possible to allocate each user with unlimited cloud cache
capacity. Instead, each registered user is allocated with a 5-
GB free cloud cache at the moment, because 5 GB is around
the size of a common TV play series 4. Given that the av-
erage size of requested videos is 379 MB, we regard a cloud
cache which accommodates more than 13 videos (5 GB / 379
MB = 13.5) as basically enough to satisfy a common user’s

4Amazon Cloud Drive [35] also sets 5 GB as the basic cloud
storage capacity provided to its users.

requirement. Extra storage is charged in unit of 5 GB. Ac-
cording to our statistics, almost all the users of VideoCloud
are 5-GB free users, which is quite similar to the situation of
Dropbox [20]. Consequently, over 6 million registered users
need more than 29000 TB of cache capacity in the worst

case. The worst case happens under the following three con-
ditions: 1) Every user fully utilizes its 5-GB cloud cache 5; 2)
There is no data reuse among the users; and 3) The data in
a user’s cloud cache is stored forever unless it is retrieved by
the user (this condition will be replaced by a more practical
and economical condition later on). It is difficult to predict
the extent of the first and second conditions because they de-
pend on users’ behaviors and may vary enormously as time
goes by. Therefore, to change the third condition is our only
choice. The third condition is replaced by a practical and
economical condition: 3) The data in a user’s cloud cache is
stored for one week unless it is retrieved by the user. The
store period (one week) is an empirical parameter according
to our operating experiences of VideoCloud, i.e., almost all
the users (over 95%) retrieve their requested videos within
one week after the requested video is available. Currently,
VideoCloud receives around 0.22 million video requests per
day and the average size of requested videos is 379 MB, so
the total cloud cache capacity in the worst case should be:

C = 379 MB× 0.22M × 7 = 584 TB.

To cope with the fluctuations in the daily number of video
requests, the total cloud cache capacity is planned as C′ =
600 TB, slightly larger than C = 584 TB. Via the 600-TB
cloud cache, the data reuse rate among the users reaches
87%, indicating that most video requests are satisfied in-
stantly (i.e., with very low view startup delay).

3.5 Cache Replacement Strategy
Although the current cloud cache capacity (600 TB) can

well handle the current daily number of video requests (around
0.22 million), it is quite likely that the number of video re-
quests will be much higher than 0.22 million in some day.
For example, if the daily number of video requests increases
to 2.2 million, what shall we do? Obviously, it is impos-
sible for us to construct a 6000-TB cloud cache made up
of 3000 chunk servers — the hardware and energy cost are
far beyond our affordability. As a result, some data must
be replaced to make efficient utilization of the limited cloud
cache capacity, where the cache replacement strategy plays
a critical role. In this subsection, we investigate the perfor-
mance of the most commonly used cache replacement strate-
gies, i.e., FIFO (first in first out), LRU (least recently used),
and LFU (least frequently used) via real-trace driven simu-
lations. The trace is a 17-day system log (refer to Section
4.1 for detailed information) of VideoCloud. The metrics
are two-fold: 1) cache hit rate; and 2) size of replaced data,
which illustrates the I/O cost of chunk servers. We hope
the cache hit rate to be as high as possible, while the size of
replaced data to be as small as possible.

As shown in Figure 6 and Figure 7, among the three cache
replacement strategies, FIFO performs the worst, and LFU
performs the best to achieve the highest cache hit rate and
the smallest size of replaced data. The cache capacity is
set to 70 TB, and using other cache capacities rather than

5Since almost all the users of VideoCloud are 5-GB free users
at the moment, we regard every user as a 5-GB free user for
computation convenience.

5 10 15
0.55

0.6

0.65

0.7

0.75

0.8

day

c
a

c
h

e
 h

it
 r

a
te

FIFO

LRU

LFU

Figure 6: Cache hit rate.

5 10 15
15

20

25

30

35

day

s
iz

e
 o

f
re

p
la

c
e

d
 d

a
ta

 (
T

B
)

FIFO

LRU

LFU

Figure 7: Size of replaced data.

5 10 15
0

100

200

300

day

number of video requests (K)

size of requested videos (TB)

Figure 8: Daily statistics.

70 TB generates the similar results. Therefore, the Cloud
Cache of VideoCloud adopts the LFU cache replacement
strategy for future scalability. Delving more deeply, LFU
has been recognized to be especially suitable for a system
where the popularity of data objects does not change very
much over a specific time period (one day or one week) [36].
VideoCloud has the abovementioned property because most
of the data objects are unpopular videos whose popularity
hardly changes much.

4. PERFORMANCE EVALUATION

4.1 Dataset
We use the complete running log of the VideoCloud sys-

tem in 17 days, from January 1, 2011 to January 17, 2011
to evaluate the performance of cloud download. The log
includes the performance information of around 3.87 mil-
lion video requests, involving around one million unique
videos. Most of the videos are .rmvb (around 40%) and
.avi files (around 20%). 27.4% of the requested videos are
HTTP/FTP files, and the remaining are BitTorrent/eMule
files. The total size of the requested videos is 1400 TB,
and the total size of the unique videos is 280 TB. The daily
statistics are plotted in Figure 8. For each video request,
we record its user id, file link, file hash code, file type, file
size, video request time, download duration time (of the cloud
downloader), retrieve duration time (of the users), cache hit

status (1-hit, 0-miss), download success status (1-success, 0-
failure), and so on.

Figure 9 indicates that the popularity distribution of the
requested videos in 17 days is highly skewed, approximately
following the Zipf model [37]. Let x denote the popularity
ranking of a video file, and let y denote the popularity of
the file. Then we have the following fitting equation:

log(y) = −a · log(x) + b,

which is equal to

y = 10b · x−a,

where a = 0.8464 and b = 11.3966. More in detail,
97.1% of the videos receive less than one request per day
while merely 0.09% of the videos receive more than ten re-
quests per day (we empirically use the indicator “ten re-
quests per day” as the boundary between popular and un-
popular videos), demonstrating that almost all the requested
videos in VideoCloud are unpopular. Besides, around 83% of
the requests are issued for unpopular videos. As mentioned

in Section 1, our cloud download scheme aims to provide ef-
ficient content distribution service for unpopular videos, so
we only evaluate the performance corresponding to unpop-
ular videos in the following subsections.

4.2 Metrics
We use three major metrics as follows to evaluate the per-

formance of a cloud download system.

1. Data transfer rate denotes the data rate when a user
retrieves his requested video from the cloud. Specifi-
cally, data transfer rate = file size

retrieve duration time
.

2. View startup delay denotes how long a user must wait
for the cloud to download his requested video. For a
video request, if the cache hit status is 1-hit, the view
startup delay is taken as 0; otherwise, the view startup
delay is regarded as the download duration time of the
cloud downloader.

3. Energy efficiency denotes how much energy is saved
by using cloud download, compared with the common
download method. In particular, we consider the user-
side energy efficiency and the overall energy efficiency,
respectively.

4.3 Data Transfer Rate
Since the data transfer rate is computed by dividing the

file size by the retrieve duration time, in this subsection we
firstly present the CDF of file size (in Figure 10), the CDF
of retrieve duration time (in Figure 11) and the CDF of data
transfer rate (in Figure 12), and then try to discover their
relations.

The average file size is 379 MB, which is close to the com-
mon size of a 100-minute video, given the fact that around
60% of the requested videos are .rmvb and .avi files. From
Figure 10, we find that 16% of the files are smaller than
8MB, most of which are demo videos, pictures, and docu-
ments. The reason lies in that many video content providers
like to attach the introductions, snapshots, or advertise-
ments to the videos.

The average retrieve duration time is 32 minutes. From
Figure 11, we see that 73% of the files are retrieved in less
than 32 minutes, and 93% of the files are retrieved in less
than 100 minutes so that if the file is a 100-minute video,
it can be viewed with high playback continuity (the user
can choose either mode: view-as-download or view-after-
download).

10
0

10
2

10
4

10
0

10
5

ranking

fi
le

 p
o

p
u

la
ri
ty

log(y) = −a*log(x)+b

measurement
Zipf fitting

Figure 9: Popularity distribution of

requested videos.

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

avg = 379 MB

file size (MB)

C
D

F

Figure 10: CDF of file size.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

avg = 32 minutes

retrieve duration time (minute)

C
D

F

Figure 11: CDF of retrieve duration

time.

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

avg = 202 KBps

data transfer rate (KBps)

C
D

F

Figure 12: CDF of data transfer

rate.

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

avg = 433 minutes

download duration time (minute)

C
D

F

Figure 13: CDF of download dura-

tion time.

0 500 1000
0

0.2

0.4

0.6

0.8

1

avg = 71 KBps

download data rate (KBps)

C
D

F

Figure 14: CDF of download data

rate.

The average data transfer rate is 202 KBps (> 1.6 Mbps).
As shown in Figure 12, over 80% of the data transfer rates
are more than 37.5 KBps (= 300 Kbps) which is the basic
playback rate of online videos [2, 21]. The main reason why
around 20% of the data transfer rates are less than 300 Kbps
is that the user does not locate at the four major ISPs in
China (as mentioned in Section 3.2) and thus his video re-
trieve data flow crosses multiple ISPs. More in detail, the
data transfer rate in each ISP is plotted in Figure 15.

Telecom Unicom Mobile CERNET Other ISPs
0

50

100

150

200

250

300

350

K
B

p
s

Figure 15: Data transfer rate in each ISP.

We discover a simple but accurate relation among the av-
erage file size, the average data transfer rate, and the average
retrieve duration time, that is

the avg file size (379 MB)

the avg data transfer rate (202 KBps)
=

the avg retrieve duration time (32 minutes).

(1)

This is a very useful equation which illustrates that if we
take some measures (e.g., to invest more upload servers with
higher upload bandwidth, or deploy more upload servers
in more ISPs) to further enhance the data transfer rate,
the retrieve duration time is expected to decrease inverse-
proportionally. Thereby, we can find a proper tradeoff point
between the data transfer rate and the retrieve duration time
for future design.

4.4 View Startup Delay
View startup delay is effectively alleviated by the implicit

and secure data reuse among the users in VideoCloud. For
a video request, if the cache hit status is 1-hit (i.e., the
requested video has been stored in the cloud cache), the
view startup delay is taken as 0; otherwise, the view startup
delay is the download duration time. Thus, we firstly present
the CDF of download duration time (in Figure 13) and the
CDF of download data rate (in Figure 14), and then get the
amortized view startup delay.

The average download duration time is 433 minutes and
the average download data rate is 71 KBps (= 0.57 Mbps).
In the previous subsection, we discover the relationship (see
Equation (1)) among the average file size, the average data
transfer rate, and the average retrieve duration time. How-
ever, this relationship does not exist as to the download
duration time and the download data rate:

the avg file size (379 MB)

the avg download data rate (71 KBps)
= 91 minutes

≪ the avg download duration time (433 minutes).

(2)

The reason is that most download events have too low

Task 1

Task 2

Task 3

Task 4

Task 5

t

s1 f1
t1

s5 f5
t5

Figure 16: Download parallelism of a user i.

download data rate, e.g., 22% of the download rates are less
than 2 KBps, 45% less than 10 KBps, and 70% less than 37.5
KBps (= 300 Kbps). In particular, 79% of the download
data rates are less than the average download data rate (71
KBps).

As mentioned in Section 3.3, the data reuse rate among
the users in VideoCloud reaches 87%, so the amortized view
startup delay = 87% · 0 + 13%· 433 minutes = 56 minutes.
We will make efforts to further reduce the amortized view
startup delay, although this may be a challenging work.

4.5 Energy Efficiency
It is difficult for VideoCloud to record the accurate energy

cost of each user, so we leverage the approximate power
consumption of a PC (personal computer) to estimate the
average energy cost of the users. According to a recent IDC
report [38], laptop sales have occupied about 70% of the PC
sales. And using the average statistics of the Dell PCs [39],
the power consumption of a laptop is about 50 W and that
of a desktop is about 250 W. Thereby, the average power
consumption of a PC is estimated as

P1 = 50W · 70% + 250W · 30% = 110W.

Our 17-day system log includes the performance informa-
tion ofN = 3.87M video requests. Without cloud download,
the energy cost for the users to accomplish all the video re-
quests is denoted as E1. To properly estimate E1, the down-
load parallelism of each user must be taken into account. As
shown in Figure 16, in the common download way, suppose
the user i starts Task 1 at the time s1 and finishes Task 1 at
the time f1, and then the download duration time of Task
1 is t1 = f1 − s1. The meanings of the symbols for Task
2/3/4/5 are similar. Then the download parallelism of the
user i is computed as

pi = (
5∑

j=1

tj)/(f3 − s1 + f5 − s5),

and the energy cost of the user i is computed as

ei = P1 · (f3 − s1 + f5 − s5) = P1 · (
5∑

j=1

tj)/pi.

As a result, E1 is estimated as

E1 =
m∑

i=1

ei = 2.21M KWH,

where m denotes the total number of users and KWH =
Kilowatt Hour.

By using cloud download, the energy cost of the whole
system is:

E2 = Ec + Eu,

where Ec denotes the energy cost of the cloud utilities and
Eu denotes the energy cost of the users. Since each server
in the cloud works in all the time and the average power
consumption of a server is P2 = 700W , Ec is estimated as:

Ec = P2 ·S · 17 days = 700W · 426 · 17 days = 0.12M KWH,

where S is the total number of servers in VideoCloud.
And Eu is estimated in the same way we estimate E1:

Eu =

m∑

i=1

e′i = 0.18M KWH,

where e′i is the energy cost of the user i in retrieving his
requested videos from the cloud. Therefore,

E2 = Ec+Eu = 0.12M KWH+0.18M KWH = 0.3M KWH.

In conclusion, the user-side energy efficiency is

E1 − Eu

E1

=
2.21M − 0.18M

2.21M
= 92%, (3)

and the overall energy efficiency of the total cloud down-
load system (cloud + users) is

E1 −E2

E1

=
2.21M − 0.3M

2.21M
= 86%. (4)

5. CONCLUSION AND FUTURE WORK
Video content distribution is becoming a kill application

of the Internet owing to the users’ inflating requirements on
both video quantity and quality, so it is of great importance
to investigate how to achieve high-quality content distribu-
tion for both popular and unpopular videos. In this paper,
we firstly analyze the state-of-the-art techniques. We find
they generally work well in distributing popular videos, but
do not provide satisfactory content distribution service for
unpopular videos. In fact, there are many more unpopular
videos than popular videos over the Internet. Therefore, we
propose and implement the novel cloud download scheme,
which utilizes cloud utilities to achieve high-quality content
distribution for unpopular videos. Running logs of our real
deployed commercial system confirm the effectiveness and
efficiency of cloud download. Our study provides practical
experiences and valuable heuristics for making use of cloud
utilities to achieve efficient Internet services.

Still some future work remains. Firstly, it is possible to ex-
tend the application of cloud download to smaller or private
organizations. In our opinion, even a company or a univer-
sity can build a cloud download system like VideoCloud as
its private cloud system to facilitate its users. For exam-
ple, we discover that in many companies some employees
may keep their computers all night on to continue an un-
finished download task after they leave the company, which
is rather energy-inefficient. Since the design of cloud down-
load (described in Section 3) is quite simple and practical, a
company can invest in building a private (small-scale) cloud
download system and then encourage its employees to send
every download request to the cloud.

Secondly, as mentioned in Section 3.3, although cloud
download has improved the download success rate of re-
quested videos to 81.4%, download failure still exists. In
fact, it is very difficult to judge the download failure of a
video request. Given that the most powerful web search en-
gine has just discovered less than 1% of all the things existing
in the Internet [40], it is impossible to tell a user whether his

requested video can be obtained at last if we keep on trying.
Consequently, we have to tell the user his video request is
judged to have failed at the “right” time. Then the key point
is: what is the “right” time? In another words, what is the
rule to judge the failure of a video request? Presently, we
choose a simple judging rule which takes into account both
the download duration time and the download progress (i.e.,
the download completion fraction of the requested video).
The rule is: check the download progress periodically; if the
download progress does not change in the latest period, the
video request is judged to have failed. The current period
is empirically set to be 24 hours. Next step we plan to fur-
ther analyze the system log to discover more factors that
influence the failure of video requests and consider a more
accurate failure judging algorithm.

Finally, as a large-scale commercial system in its first ver-
sion, VideoCloud tends to adopt traditional/straightforward
design in constructing each component so that the deploy-
ment and debugging are easy to handle. We realize there
is still considerable optimization space for novel/original de-
sign to take effect. This paper is the first step of our efforts,
and we are dedicated to obtaining more lessons and insights
on our way.

6. ACKNOWLEDGEMENTS
This work is supported by the National Basic Research

Program of China under Grant 2011CB302305 and the Na-
tional Natural Science Foundation of China under Grants
61073015 and 60873051. We would like to thank Fuchen
Wang and Yue Cao for their valuable help.

7. REFERENCES
[1] The Cisco Visual Networking Index report.

http://newsroom.cisco.com/dlls/2008/ekits/Cisco
Visual Networking Index 061608.pdf.

[2] YouTube we site. http://www.youtube.com.

[3] The BitTorrent protocol specification.
http://www.BitTorrent.org/beps/bep 0003.html.

[4] PPLive web site. http://www.pptv.com.

[5] X. Zhang, J. Liu, B. Li, and T. Yum.
“CoolStreaming/DONet: A Data-driven Overlay
Network for Peer-to-Peer Live Media Streaming,” In
IEEE INFOCOM, 2005.

[6] C. Huang, J. Li, and K. Ross. “Can Internet
Video-on-Demand be Profitable?” In ACM
SIGCOMM, 2007.

[7] Akamai web site. http://www.akamai.com.

[8] J. Kangasharju, J. Roberts, and K.W. Ross. “Object
replication strategies in content distribution
networks,” Computer Communications, vol. 25, no. 4,
2002, pp. 376 - 383.

[9] eMule web site. http://www.eMule.org.

[10] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.
Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin,
I. Stoica, and others. “Above the Clouds: A Berkeley
View of Cloud Computing,” Berkeley Tech. Rep., 2009.

[11] A. Greenberg, J. Hamilton, D.A. Maltz, and P. Patel.
“The cost of a cloud: research problems in data center
networks,” SIGCOMM Computer Communication
Review, vol. 39, no. 1, 2008, pp. 68 - 73.

[12] K. Roth and K. McKenney. “Energy Consumption by
Consumer Electronics in U.S. Residences,” Final

Report to the Consumer Electronics Association
(CEA), Jan. 2007.

[13] J. R. Douceur. “The sybil attack,” In IPTPS 2002,
Cambridge, MA, March 2002, pp. 251 - 260.

[14] A. Singh, T. Ngan, P. Druschel, D. Wallach. “ Eclipse
attacks on overlay networks: Threats and defenses,” In
IEEE INFOCOM, 2006.

[15] E. Sil and R. Morris. “ Security considerations for
peer-to-peer distributed hash tables,” In IPTPS, 2002.

[16] The VideoCloud web page (March 2011).
http://xf.qq.com/help video.html.

[17] The QQCyclone platform. http://xf.qq.com.

[18] Amazon S3 web site. http://aws.amazon.com/s3.

[19] MS Azure. http://www.microsoft.com/windowsazure.

[20] Dropbox web site. http://www.dropbox.com.

[21] Youku web site. http://www.youku.com.

[22] D. Wu, Y. Hou, W. Zhu, Y. Zhang, and J. Peha.
“Streaming video over the Internet: approaches and
directions,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 11, no. 3, 2001.

[23] The ChinaCache CDN web site.
http://www.chinacache.com.

[24] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H.
Zhang, and B. Li. “Design and deployment of a hybrid
CDN-P2P system for live video streaming: experiences
with LiveSky,” In ACM Multimedia, 2009, pp. 25 - 34.

[25] C. Wu, B. Li, and S. Zhao. “On Dynamic Server
Provisioning in Multichannel P2P Live Streaming,” to
appear in IEEE/ACM Transactions on Networking.

[26] UUSee web site. http://www.uusee.com.

[27] http://www.webtvwire.com/category/internet-hdtv.

[28] F. Liu, S. Shen, B. Li, B. Li, H. Yin, and S. Li.
“Novasky: Cinematic-Quality VoD in a P2P Storage
Cloud,” In IEEE INFOCOM, 2011.

[29] China Telecom. http://www.chinatelecom.com.cn.

[30] China Unicom. http://www.chinaunicom.com.cn.

[31] China Mobile. http://www.10086.cn.

[32] CERNET (China Education and Research Network)
web site. http://www.cernet.edu.cn.

[33] H. Xie, Y.R. Yang, A. Krishnamurthy, Y.G. Liu, and
A. Silberschatz. “P4P: Provider portal for
applications,” In ACM SIGCOMM, 2008.

[34] D.R. Choffnes, and F.E. Bustamante. “Taming the
torrent,” In ACM SIGCOMM, 2008.

[35] Amazon Cloud Drive web site.
https://www.amazon.com/clouddrive/learnmore.

[36] S. Podlipnig and L. Boszormenyi. “ A survey of web
cache replacement strategies,” ACM Computing
Surveys, vol. 35, no. 4, 2003, pp. 374 - 398.

[37] L. Breslau, P. Cao, L. Fan, G. Phillips, and S.
Shenker. “Web caching and Zipf-like distributions:
Evidence and implications,” In IEEE INFOCOM,
1999, pp. 126 - 134.

[38] The IDC Desktop and Laptop Sales report.
http://news.techworld.com/sme/3227696/desktop-
and-laptop-sales-to-grow-this-year.

[39] Dell web site (March 2011). http://www.dell.com.

[40] B. Croft, D. Metzler, and T. Strohman. “Search
engines: Information retrieval in practice,”
Addison-Wesley, USA, 2009.

